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Abstract. Since a quantum dot has an extremely long spin relaxation time, 
we must consider two spin selection rules for its transport characteristics. 
Namely, the total spin of the quantum dot is conserved during internal 
transitions, and it should change by ±1/2 during a single-electron 
tunneling transition. We find that these selection rules are strictly obeyed 
in transport through a few-electron vertical quantum dot, and that related 
non-equilibrium transport can break the single-electron tunneling scheme.  

1. Introduction 
A quantum dot (QD) in the Coulomb blockade (CB) regime has discrete many-body 

energy states with a well-defined total spin, S, for a well-defined electron number, N [1]. 
This characteristic is attractive for the manipulation of the spin and charge state of 
electrons. The spin relaxation time in a QD is an important parameter for spin-memories 
and quantum information storage [2,3]. The inelastic spin relaxation time is theoretically 
predicted to be much longer than 100 µs for a typical GaAs QD [4]. Actually, the 
relaxation time can easily exceed the experimental limit of conventional optical and 
electrical measurements [5,6]. Our recent electrical measurements reveal an extremely 
long spin-flip energy relaxation time, τspin > 100 µs.  This is much longer than the typical 
interval for tunneling events (Γ-1 = 1 - 100 ns for a typical tunneling current of eΓ ~ 1 - 
100 pA, where Γ is the tunneling rate), as well as the momentum relaxation time, τmo ~ 
10 ns [7,8]. Therefore, no internal transition that changes the total spin of the QD occurs 
within the typical transport time scale. 

There is another important selection rule in the transport characteristics, and it is 
responsible for the spin-blockade effect. Since a single electron possesses a spin 1/2, a 
single-electron tunneling transition should change the total spin by ±1/2, and other 
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tunneling transitions should be forbidden [9]. The spin blockade effect has been 
discussed for the suppression of the conductance or the appearance of negative-
differential conductance [10,11,12]. However, most of the experimental interpretations 
for the weak suppression of the conductance seem to contradict the naïve expectation of a 
complete suppression of the current.  

In this article, we investigate these spin-selection rules (the spin conservation and the 
spin blockade effect) in the transport characteristics of a few-electron QD. All the 
transport processes can be well understood by these spin selection rules. However, we 
find that the number of electrons, the total spin, and the total energy of the QD can 
fluctuate significantly due to non-equilibrium transport. Although our findings for a few-
electron QD are obtained from gate-voltage pulse excitation measurement, the same 
tunneling transitions can also be seen in conventional dc transport characteristics. 

 

2. Reconsideration of orthodox Coulomb blockade theory 
 

Figure 1(a) shows the allowed tunneling transitions between different (N, S) states in a 
few-electron QD consistent with the two kinds of spin selection rules. For example, the 
internal transition between (N, S) = (2, 0) and (2, 1) (dotted arrow) is forbidden by spin 
conservation. The tunneling transition between (N, S) = (2, 0) and (3, 3/2)  (dashed 
arrow) is forbidden by the spin blockade. These spin selection rules restrict the possible 
transitions in a QD, and give rise to complicated excitation processes that cannot be 
explained by orthodox CB theory. 
 The orthodox CB theory accounting for the CB effect and single-electron tunneling 
(SET) was originally introduced for transport through a small conductive island with a 
continuum density of states [13]. This theory is widely accepted for a variety of systems 
involving semiconductors, normal and superconducting metals, and molecules. The total 
energy, U(N), of the system, in which an island containing N electrons is electrostatically 
affected by a gate voltage, Vg, via a capacitance, Cg, is given by 
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The first term is the electrostatic energy approximated by a constant Coulomb interaction. 
Enclosed in the parenthesis is the sum of the electron charge on the dot, the induced 
charge by the gate, and an offset charge, q0. CΣ is the total capacitance of the dot. The 
second term, Eint(N), is the sum of the energies of the occupied N electron levels, 
measured relative to the Fermi energy of the leads, accounting for the internal degrees of 
freedom of the QD. Other corrections to the many-body interactions are also included in 
Eint. In the orthodox theory, as originally considered for a continuum density of states, the 
second term is neglected because the QD is assumed to relax quickly to the minimum 
energy, Eint

min, which is almost independent of N. In this SET scheme, an electron that 
has entered the island leaves before another electron is allowed to enter when U(N0) = 
U(N0+1) as shown in Fig. 1(b). This situation is maintained unless the excitation energy 
exceeds the charging energy, Ec = e2/CΣ. In this picture, spin is neglected and N-electron 
ground states (GSs) are only considered. 
 For a QD, in which energy quantization and many-body interactions are significant, 
we must consider the discrete energy of the dot, Eint(N, S, M), which is characterized by 
total spin, S, and total angular momentum, M [1]. We focus on the regime τspin >> Γ-1, τmo, 
where spin-flip energy relaxation is effectively absent. This is the typical condition for a 
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dot weakly coupled to the leads, i.e. the coupling to the leads is still strong enough to 
give a measurable current (eΓ > 1 fA), but weak enough to prevent cotunneling current. 
If the QD is excited to any N-electron state with a different total spin from that of the N-
electron GS, the excited state (ES) cannot always relax to the GS before the QD 
undergoes a tunneling transition to another N ±1 electron state [14-16]. Successive 
tunneling transitions force the QD into highly non-equilibrium configurations. Figure 
1(c) shows a particular U(N, S) diagram, which can actually be realized in our QD (see 
below). Long-lived ESs are now included, and the different spin states have different 
energies because of Coulomb interactions. The allowed tunneling transitions indicated by 
the arrows require excitation energies smaller than the addition energy, Ea. All these 
transitions can cause the dot state (N, S, and U) to fluctuate dramatically. 

 

 
Fig. 1 (a) Possible total spin, S, for various numbers of electrons, N, in a 
QD. The solid arrows indicate allowed tunneling transitions, in which S 
changes by 1/2. Other transitions are forbidden by spin blockade (a 
representative transition is indicated by the dashed arrow) or by spin 
conservation (dotted arrow). (b) Total energy U(N) of a small classical 
island when SET allows N to fluctuate between N0 and N0+1. (c) U(N, S) 
for the QD at a particular condition (at the gate voltage γ in Fig. 2). The 
arrows indicate allowed tunneling transitions with excitation energy 
smaller than the addition energy, Ea. (d) Schematic setup for the pulse 
measurement on a vertical QD. The circular pillar is 0.54 μm in diameter. 
All the measurements are performed at a temperature ~ 0.1 K. The 
magnetic field is applied parallel to the current. 

3. Pulse-excited current spectra 
 

A few-electron vertical QD was fabricated in an AlGaAs/InGaAs heterostructure to 
study the spin selection rules and non-equilibrium transport [17,18]. Electrons are 
confined laterally by an approximate two-dimensional harmonic potential (confinement 
energy of about 4 meV). The N-dependent addition energy clearly reveals a shell 
structure for a circular disk-shaped QD. The quantum numbers, N, S and M can be 
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identified from the magnetic field, B, dependence of the current spectrum. Zeeman 
splitting is not resolved, so we neglected it.  

 
Fig. 2 (color). Pulse excited current spectra measured from B = 2.4 T (the 
bottom spectrum) to 3.6 T (the top spectrum). The colors represent current 
amplitudes [white (0 pA) - red (0.25 pA) - black (≥ 0.5 pA)]. N is fixed in 
each triangular region along the bottom due to CB. The pulse excited 
current through long-lived ESs is marked by arrows a, a', b, b', etc. The 
prime (non-prime) indicates a transition that decreases (increases) N by 
one.  

To investigate highly non-equilibrium transport, we employ a pulse excitation 
technique [6,7,19]. A square pulse of amplitude Vp, combined with the static gate voltage, 
Vg, is applied to the gate electrode (g) as shown in Fig. 1 (d). A small dc bias voltage Vb = 
0.15 mV is also applied so that electrons are injected from the bottom contact, b 
(corresponding tunneling rate, Γb

-1 ~ 10 ns), and escape to the top contact, t (Γt
-1 ~ 100 ns). 

The averaged dc current, I, is measured during the gate-voltage pulse irradiation. 
The pulse-induced transport involving any ES is strongly affected by the energy 

relaxation time of the ES. If the conditions are adjusted in such a way that τspin >> Γt
 -1, tp, 

Γb
-1 >> τmo, one can only study current associated with long-lived spin states, whose total 

spin is different from that of any lower-lying states [16,19]. Therefore, only the lowest-
energy state for any given N and S need be considered for the pulse-excited current, and 



 

 5 

other short-lived states can be neglected. This technique is very useful in the analysis, as 
will be seen below.  
 Figures 2 show the pulse-excited current spectra for N = 0 to 6 for B = 2.4 to 3.6 T.  
For each spectrum, each current peak initially observed in the absence of the pulse (Vp ~ 
0 V) is due to the SET transition between the N- and (N+1)-electron GSs, and splits into 
two peaks of equal height (truncated in the color scale), when the pulse is applied. 
Weaker additional peaks, indicated by the arrows are due to transient current through 
long-lived ESs. Rich structure is observed in the current spectra for B = 2 to 4 T, where 
various many-body spin states are energetically close to one other [17]. The 
representative spectra in Fig. 2 are observed in the B range where the GS of the N-
electron QD is spin-unpolarized (i.e., the smaller-S states have lower energy).  
 There are a number of general features observed in the spectra. First, when the peak 
positions are extrapolated to lower Vp, pairs of peaks (e.g. labeled a and a') meet at Vp = 0 
V exactly (see e.g. dashed lines for pairs a-a' and b-b'). This behavior can be seen for all 
peaks and for the entire magnetic field range (0 - 6 T) we investigate. The peaks in Fig. 2 
are labeled in such a way that the prime (non-prime) labeled peaks are associated with 
tunneling transitions during the low (high) phase of the pulse. Second, some of the 
current peaks are terminated by other current peaks (e.g. peak d is terminated by peak b', 
and peak d' by peak e). This will be discussed in the next section. Third, the number of 
peaks is more than that expected for a simple SET scheme. For example, as shown in Fig. 
1(a), there are only two possible allowed tunneling transitions between long-lived states 
in a N = 1 and 2 QD. However, in total, three peaks (a and b and the SET peak) are seen 
in the conductive region between the N = 1 and 2 CB regions. Peak b cannot be explained 
by a higher-lying short-lived excited state of the N=2 QD. It can only be explained by 
considering non-equilibrium tunneling processes.  
 

4. Non-equilibrium tunneling transitions 
 
 All the transport spectra in Fig. 2 can be well understood from the total energy 
diagrams in Fig. 3. Figure 3(a) is the U(N, S) diagram when the gate voltage is set to 
position α at B = 3.0 T in Fig. 2. SET between (N, S) = (1, 1/2) and (2, 0) is always 
possible even at zero excitation energy. The single-particle excitation to (2, 1), 
corresponding to peak a in Fig. 2, becomes possible when the excitation energy exceeds 
the level spacing, ∆2. Since the energy relaxation from (2, 1) to (2,0) is forbidden due to 
spin-conservation, the (2, 1) state is stable until another tunneling transition takes place. 
Then, the QD can be excited to charge state (3, 1/2), indicated by the double-lined arrow 
in Fig. 3(a). This excitation requires the energy of Ea - ∆2, which is considerably smaller 
than the addition energy Ea. Since the excitation to (3,1/2) involves three charge states, N 
= 1, 2 and 3, this tunneling process can be thought of as novel double-electron tunneling 
(DET). The corresponding current peak is labeled b in Fig. 2. At gate voltage α, this 
novel DET process would require Vp ~ 200 mV, which is beyond the range of Fig. 2. 
However, it is clear that peak b should appear inside the blue bounded diamond-shaped 
region in which SET is expected from orthodox theory, as indeed it does. Figure 3(b) is 
the U(N, S) diagram when the gate voltage is adjusted to β in Fig. 2. The SET between 
the N = 2 and 3 GSs, single particle excitation to (N, S) = (2, 1) (peak b' in Fig. 2 and 
corresponding transition labeled b' in Fig. 3(a)), and novel double electron tunneling into 
(1,1/2) (peak a') are clearly seen. The extra peak c, although it is faint, is attributed to the 
transition from (2, 1) to (3, 3/2). This tunneling process is called here ES-ES tunneling, 
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because no GSs are involved. This highly non-equilibrium transport is possible because 
the spin-flip energy relaxation from (2, 1) to (2, 0) is forbidden. Since this ES-ES 
excitation requires a “pre-excitation” from (3, 1/2) to (2, 1) (labeled b'), transition c can 
only appear when transition b' is possible. So the corresponding current peak, c in Fig. 2, 
is terminated by peak b'. Similar “terminations”, such as peak d terminated by peak b', 
peak c' by peak e, and peak d' by peak e, are clearly seen in Fig. 2. They are all attributed 
to ES-ES tunneling. 
 

  
Fig. 3. Total energy diagrams U(N,S). (a), (b), and (c) respectively 
account for tunneling transitions at the gate voltage α, β, γ in Fig. 2. The 
numbers in the figures are the total spins of the states. Arrows identify 
possible single-electron tunneling transitions. These are single-electron 
tunneling (SET) between the N and N+1 GSs (thin double headed arrow), 
single particle excitation from a GS to an ES (thin arrow), novel double-
electron tunneling (double-lined arrow), tunneling between two ESs (thick 
arrow), and spin-blockaded (dashed arrow, forbidden). All transitions 
except those spin-blockaded are observed. 

 It should be noted that the transition from (2, 0) to (3, 3/2) at β in Fig. 3(b) is not 
observed because of spin-blockade. A closer look at the B-dependence is required in 
order to clearly see that the origin of peak c is in Fig. 2 is ES-ES tunneling from (2, 1), 
and not the broken spin-blockaded transition from (2, 0). The difference between the two 
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cases should appear in the gate voltage dependence of the current peak, when the 
energies of the two corresponding states are nearly degenerate. Figure 4(a) shows the B-
dependence of the peak positions for the SET peak between the N = 2 and 3 GSs (solid 
circles), and for one of the pulse-excited current peaks (open circles). The SET peak 
position shows some kinks related to the level crossings of N = 2 or 3 GSs. From a 
comparison with an exact diagonalization calculation shown in Fig. 4(b) [20], we can 
identify a transition from a spin-singlet (S = 0) to a spin-triplet (S = 1) of the N = 2 QD at 
B = BS-T, a momentum transition from M = 1 to M = 2 of the N = 3 QD at B = BM, and a 
transition from the spin-doublet (S = 1/2) to spin-quadruplet (S = 3/2) of the N = 3 QD at 
B = BD-Q. The excited state peaks (open circles) follow the crossing behavior with respect 
to the doublet-quandrupted GS transition at around B ~ BD-Q. Now suppose we look at the 
peak position of the pulse-excited current below B = BS-T. If the current arises from the 
transition (N, S) = (2, 0) to (3, 3/2), violating spin-blockade, the peak position should 
show a kink at B = BS-T due to the GS level crossing of the N = 2 QD, and follow the blue 
dotted line in Figs. 4(a) and 4(b). However, the peak position does not show any kink at 
B ~ BS-T, and follows the red solid line smoothly. This is expected for ES-ES tunneling 
from (2, 1) to (3, 3/2). Therefore, the current peak at B < BS-T ~ 4 T must be associated 
with ES-ES tunneling. Actually, we never see the spin-blockaded transition within our 
current sensitivity (~ 1 fA). 

 
Fig. 4. (a) The gate voltage dependence of the pulse-excited current peaks. 
Solid circles are for the SET current between the N = 2 GS and N = 3 GS, 
while open circles are for pulse-excited current involving a long-lived ES. 
(b) Electrochemical potential, µS,M, calculated by an exact diagonalization 
calculation for the tunneling transitions to the N = (3, S, M) states. The 
black solid lines are calculated with µS,M = U(N=3, S, M) - min[U(2,0), 
U(2,1)]. The blue dashed line is for the spin-blockaded transport, µ3/2,3 = 
U(N = 3, S = 3/2, M = 3) - U(2, 0), while the red solid line is for the ES-
ES tunneling, µ'3/2,3 = U(N=3, S=3/2, M=3) - U(2, 1). The corresponding 
lines in (a) are guides for the eye only. 

 Other complex tunneling processes involving both novel DET and ES-ES tunneling 
are also observed. Peak d (c') in Fig. 2, which is terminated by peak b' (e), is attributed to 
ES-ES tunneling, whose excitation process involves three charge states. More 
complicated excitations are expected for QDs with more electrons. Four different peaks 
(e, f, c' and d' in Fig. 2) are observed between the N = 3 and 4 CB regions. The 
corresponding transitions are indicated in the total energy diagram in Fig. 3(c). The 
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fluctuation in the total energy can be significantly greater than the pulse excitation energy. 
Non-equilibrium transport can lead to the accumulation of energy in excess of the 
excitation energy. As N increases, many long-lived ESs with different S can contribute to 
the transport. The complexity of many-body excitations is expected to increase with N 
and S [21].  
 

5. Summary 
 
 We successfully investigated tunneling transitions associated with long-lived spin 
states. All the tunneling processes are understandable in terms of spin selection rules 
(spin conservation and spin blockade). However, non-equilibrium transport causes 
significant fluctuation of the number of electrons, total spin, and total energy of the QD. 
It is important to suppress these non-equilibrium tunneling processes for the easy 
manipulation of spin and charge in a QD. For example, the charging energy (or addition 
energy) is no longer a good index since the SET scheme is no longer simply followed. In 
order to keep in the true SET regime, any excitation energy (applied voltage, thermal 
energy, etc.) has to be minimized to avoid double-electron tunneling.  

References 
[1] L.P. Kouwenhoven et al., Reports on Progress in Physics 64, 701 (2001). 
[2] D. Loss and  D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998). 
[3] P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000). 
[4] A.V. Khaetskii and Yu.V. Nazarov, Phys. Rev. B 61, 12639 (2000). 
[5] M. Paillard, et al., Phys. Rev. Lett. 86, 1634 (2001). 
[6] T. Fujisawa, Y. Tokura, and Y. Hirayama, Phys. Rev. B 63, 081304(R) (2001); 

ibid Physica B 298, 573 (2001). 
[7] T. Fujisawa et al., to be published. 
[8] U. Bockelmann, Phys. Rev. B 50, 17271 (1994). 
[9] D. Weinmann et al., Phys. Rev. Lett 74, 984 (1995). 
[10] L.P. Rokhinson, et al., Phys. Rev. B 63, 035321 (2001). 
[11] A.K. Huttel et al., cond-mat/0109104. 
[12] M. Ciorga et al., Appl. Phys. Lett. 80, 2177 (2002). 
[13] H. van Houten, C.W.J. Beenakker and A.A.M. Staring, in "Single Charge 

Tunneling, Coulomb Blockade Phenomena in Nanostuctures" ed. H. Grabert and 
M.H. Devoret, NATO ASI series B 294 (Plenum Press, New York, 1991), pp. 
167-216. 

[14] J. Weis et al., Phys. Rev. Lett. 71, 4019 (1993). 
[15] O. Agam et al., Phys. Rev. Lett. 78, 1956 (1997). 
[16] T. Fujisawa et al., Phys. Rev. Lett. 88, 236802 (2002). 
[17] S. Tarucha et al., Phys. Rev. Lett. 77, 3613 (1996). 
[18] L.P. Kouwenhoven et al., Science 278, 1788 (1997). 
[19] T. Fujisawa et al., Physica B 314, 224 (2002). 
[20] S. Tarucha et al., Physica E 3, 112 (1998). 
[21] B.L. Altshuler et al., Phys. Rev. Lett. 78, 2803 (1997). 


	1.Introduction
	2.Reconsideration of orthodox Coulomb blockade theory
	3.Pulse-excited current spectra
	4.Non-equilibrium tunneling transitions
	5.Summary
	References

