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We describe two kinds of electrical pump and probe measurements to investigate energy relaxation time in a quantum dot in
the Coulomb blockade regime. Transient current driven by single-step pulses can be used to determine the tunneling rates for
the two tunneling barriers as well as the relaxation rate under a limited condition. A double-step pulse scheme is more useful
for deducing longer relaxation times. The feasibility of these techniques is demonstrated by simple simulations based on rate
equations that describe the time-dependent transport, and by experiments performed on a few-electron quantum dot.
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1. Introduction

A quantum dot (QD) is a small conductive island in which
electrons occupy discrete energy states.1) Energy relaxation
from an excited state (ES) to a ground state (GS) in a QD is
an important characteristic for understanding the dynamics
of a QD system. Analyses of conventional single electron
tunneling current suggest that some unknown excited states
show long relaxation time.2) Recent time-dependent trans-
port experiments have clearly revealed an extremely long
spin-flip relaxation time and relatively short momentum
relaxation time in a QD.3) When the energy relaxation is
inefficient, excess energy, which can be even higher than the
excitation energy of the transport, can remain in a QD.
Long-lived spin states can cause spin-blockade phenomena
and nonequilibium transport, which actually breaks down
the single electron tunneling scheme.4) Moreover, the energy
relaxation time, which is often called longitudinal relaxation
time, or T1, in spin dynamics, is an important parameter to
describe how strongly the quantum system is coupled to the
environment.5) In order to obtain a well-isolated quantum
system, which is desired for future quantum information
technologies, relaxation time should be investigated in many
materials and structures under various conditions. In this
paper, we describe two electrical pump and probe measure-
ment schemes in detail, and discuss the feasibility of
measuring relaxation time as well as tunneling rates.

2. Electrical Pump and Probe Measurements

We consider a QD in the Coulomb blockade (CB) regime,
where the number of electrons in the QD can be fixed at an
integer, N. When a gate voltage is immediately changed
from one CB region at N ¼ N0 to another at N ¼ N0 þ 1,
one electron is injected into the QD, and when the gate
voltage is changed from N ¼ N0 þ 1 to N ¼ N0, one
electron is extracted from the QD. These injections and
extractions can be performed with a time accuracy approx-
imately given by the inverse of their tunneling rates, ��1,
which can be varied in a wide range from �1 ps to �1 ms for

typical QDs. Moreover, an electron can be (sometimes
selectively) injected into, or extracted from, the GS or ESs
by adjusting external voltages. Therefore, one can design a
waveform of the gate voltage to measure the energy
relaxation time and the tunneling rates. We can repeatedly
apply voltage pulses to push the system out of equilibrium,
and measure the time-integrated nonequilibrium transient
current in the following two ways.

2.1 Single-step pulse measurement
A very simple scheme is to apply a rectangular-shaped

voltage-pulse to a gate electrode, as schematically shown in
Figs. 1(a) and 1(b).6) For simplicity, we consider energy
relaxation from the first ES to the GS for an N0-electron QD,
and neglect higher ESs. For proper measurement, we
consider strong asymmetric tunneling barriers, whose tun-
neling rates are �L � �R, under a relatively large source-
drain bias voltage jeVsdj � h��L. The polarity of the bias
voltage is chosen so that an electron is injected from the
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Fig. 1. (a) Diagram of the electrical pump and probe experiment for a

quantum dot. (b) Schematic waveform of the single-step pulse. (c) Energy

diagram during the low gate voltage. (d) Energy diagram during the high

gate voltage. Possible tunneling processes and relaxation path are shown

by arrows; thick (thin) arrows for the fast (slow) tunneling processes and

a wavy arrow for the relaxation.
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thinner barrier at a faster rate �L and an electron is extracted
from the thicker barrier at a slower rate �R. (We refer to this
situation as forward bias.)

First, we prepare a QD in the N0 � 1 electron GS by
adjusting the gate voltage at Vg ¼ Vl in the N0 � 1 CB
region for a sufficiently long period, tl � ��1

L . In this
situation, both the N0-electron ES and the GS are energeti-
cally located above the chemical potential of the electrodes,
�L and �R, as shown in Fig. 1(c). Then, the gate voltage is
immediately, but adiabatically, changed to Vg ¼ Vh in the
N0-electron CB region. The rise time of the voltage pulse
should be comparable to or shorter than ��1

L to see the
following effect, but we only consider the adiabatic
condition, in which the voltage changes slowly so as not
to shake up the quantum system. The high voltage Vg ¼ Vh

is adjusted so that only the N0-electron ES is located
between �L and �R (transport window), as shown in Fig.
1(d). All the possible tunneling processes and the energy
relaxation process are shown by arrows. A relatively large
source-drain voltage, jVsdj � h��L, is applied in order to
eliminate backward tunneling processes, such as tunneling
from the N0-electron ES to the source electrode, which
would degrade the relaxation time measurement.

When a pulse is applied, an electron enters either the N0-
electron ES or the GS with probabilities, �L,e and
�L,g þ �R,g, respectively, but only one electron can enter
the dot at a time. If an electron enters the ES, it can relax to
the GS, or tunnel to the drain electrode to give a net current.
However, the transport is blocked once the GS is occupied.
Because of the strongly asymmetric barriers, �L � �R, an
electron can stay in the ES for a relatively long time ���1

R ,
during which relaxation may take place. The transport
through the ES may be terminated by the relaxation process.
Therefore, the transport is sensitive to the relaxation time, if
the relaxation time is longer than the injection time ��1

L but
shorter than the extraction time ��1

R . This transient transport
can be considered as a kind of pump and probe measure-
ment. An electron is pumped into the ES within ��1

L after the
rising edge of the pulse, and then the electron in the ES is
continuously probed by the slow tunneling rate ��1

R until it
becomes empty.

To clarify this scheme, we analyze this nonequilibrium
transport by using simple rate equations. We assume
tl � ��1

L , so no excess electron exists in the QD at the
beginning of the pulse at t ¼ 0. The nonequilibrium trans-
port at the high voltage is described by the rate equations

d

dt
�e ¼ �L,eð1� �e � �gÞ � �R,e�e �W�e

d

dt
�g ¼ ð�L,g þ �R,gÞð1� �e � �gÞ þW�e;

ð1Þ

in which all the tunneling processes shown by arrows in Fig.
1(d) are taken into account. Here, �e and �g are the average
electron numbers in the ES and the GS, respectively. �e ¼
�g ¼ 0 at t ¼ 0, and 0 � �e þ �g � 1 is satisfied due to CB.
The average number of tunneling electrons, hnhi, during a
duration, th, for the high voltage is given by

hnhi ¼
Z th

t¼0

½�R,e�e � �R,gð1� �e � �gÞ�dt: ð2Þ

The first term of the integrant describes the probing current

from the ES to the drain, while the second term is a stray
transport from the drain to the GS and gives a minor effect to
the forward bias condition. At the end of the pulse at t ¼ th,
an electron can remain in the ES and GS with the probability
�eðthÞ or �gðthÞ, respectively. When the gate voltage is
changed to low Vl, the residual transport is described by the
rate equations

d

dt
�e ¼ �ð�L,e þ �R,e þWÞ�e

d

dt
�g ¼ �ð�L,g þ �R,gÞ�g þW�e;

ð3Þ

with the initial conditions �eðthÞ and �gðthÞ. The average
number of tunneling electrons, hnli, during a sufficiently
long period of low voltage, tl, which is replaced with
infinity, is given by

hnli ¼
Z 1

t¼th

½�R,e�e þ �R,g�g�dt: ð4Þ

Therefore, the total number of tunneling electrons per pulse
is obtained by

hnðthÞi ¼ hnhi þ hnli: ð5Þ

Although the analytical expression of eq. (5) contains
different exponential terms, all curves can be approximated
by a single exponential curve. Figure 2(a) shows the
variation of hnðthÞi for various relaxation rates, W ¼
103{107 Hz, under the conditions of �L,e ¼ �L,g ¼ 109 Hz
and �R,e ¼ �R,g ¼ 106 Hz. The initial slope at th ¼ 0 is
approximately given by
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Fig. 2. (a) The average number of tunneling electrons hnðthÞi, calculated
for the single-step pulse scheme. Each curve is approximated by a single

exponential curve, hnðthÞi ’ nmax½1� expð�DthÞ�, whose parameters

nmax and D are plotted in (b) and (c), respectively.
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dhnðthÞi
dth

jth¼0 ¼ �L,e�R,e=ð�L,e þ �R,eÞ: ð6Þ

We numerically calculated eq. (5), and approximated it to a
single exponential function hnðthÞi ’ nmax½1� expð�DthÞ�.
Here, nmax is the maximum number of tunneling electrons
that can be obtained with a sufficiently long th, and D is the
decay rate that describes the transient transport. D was
determined so as to satisfy hnð1=DÞi ¼ nmaxð1� 1=eÞ. The
nmax and D are plotted by solid lines in Figs. 2(b) and 2(c),
respectively.

A similar calculation [dashed lines in Figs. 2(b) and 2(c)]
was carried out for the reverse bias condition, where an
electron is injected through a thicker barrier with slower rate
�R and is extracted through a thinner barrier with faster rate
�L. In this case, an electron easily enters the GS, and
immediately ceases the transient transport.

As clearly seen from the figures, D and nmax for reverse
bias are independent of W , while those for forward bias
depend on W . Therefore, one can determine the tunneling
rates from the reverse bias condition. D for reverse bias,
Drev, gives the total tunneling rate Drev � �tot,g ¼
�L,g þ �R,g � �L,g. Small nmax,rev reflects the asymmetry of
the tunneling rates � �R=�L. In contrast, Dfor for forward
bias can vary from �R to �L, and nmax,for can vary from �1

to �R=�L depending on W . Therefore, the decay rate D of
the forward bias gives the relaxation rate W , provided that

�L & W & �R: ð7Þ

This condition can also be confirmed if nmax,for for forward
bias is smaller than �1 but larger than nmax,rev, or if Dfor is
smaller than Drev but larger than �R.

Another measurement for the tunneling rates can be
performed by changing tl with a sufficiently long th. The bias
polarity can be either forward or reverse. Under the
condition th � ��1

R at Vg ¼ Vh, the QD ends up with the
N0-electron GS after the pulse, i.e. �eðthÞ ¼ 0 and �gðthÞ ¼ 1.
During the next low-voltage application, an electron in the
GS leaves the QD at a rate given by �tot,g ¼ �L,g þ �R,g.
Since this extraction is required to see the transient current,
the average number of tunneling electrons is simply given by

hnðtlÞi ¼ nmax½1� expð��tot,gtlÞ�; ð8Þ

and �tot,g can be obtained from this tl dependence. Combin-
ing this with the conventional dc tunneling current, which is
given by

Ig ¼ e�L,g�R,g=ð�L,g þ �R,gÞ ð9Þ

for the saturated current only through the GS,7,8) allows us to
determine �L,e and �R,e.

2.2 Double-step pulse measurement
A better method to determine longer relaxation time, i.e.,

W < �R,e, is to apply a double-step voltage pulse, in which
Vg is changed to three voltages, Vl, Vh and Vm as shown in
Fig. 3(a).3,9) Pumping and probing sequences are more
clearly separated in this scheme. First, when Vg ¼ Vl [Fig.
3(b)], an empty QD is prepared during a sufficiently long
period, tl. When Vg is suddenly increased to Vh [Fig. 3(c)] so
that both ES and GS are located below the Fermi energies,
an electron enters either the ES or the GS. Once an electron

enters either state, it can neither leave the dot, nor can
another electron enter it. The QD is effectively isolated from
the electrodes. If an electron has entered the ES, the ES may
relax to the GS during this time. Therefore, the average
number of electrons in the ES after this period, th, is
approximately given by

�e,h ¼ A expð�WthÞ

for th � ��1
L , where A ’ �L,e

�L,eþ�L,g
. When Vg is changed to Vm

[Fig. 3(d)], an electron in the ES can tunnel out to the drain,
if the ES has not yet relaxed to the GS. This tunneling
process can be described by eq. (1) with the initial
conditions �e ¼ �e,h and �g ¼ 1� �e,h. With a sufficiently
long duration, tm � ��1

R,e, for a complete readout, the
average number of tunneling electrons, hni, can be written as

hnðthÞi ¼ A0 expð�WthÞ; ð10Þ

where A0 ¼ �R,e=�R,g. Therefore the relaxation rate can be
obtained from hnðthÞi. In this scheme, an electron is pumped
into the ES at the rising edge of the pulse to Vh, and the
electron in the ES is probed during the middle voltage Vm.
The QD experiences the relaxation between the pumping
and probing sequence.

Figure 4(a) shows a calculation of hnðthÞi for the double-
step pulse measurement with �L,e ¼ �L,g ¼ 109 Hz and
�R,e ¼ �R,g ¼ 106 Hz. We solved a series of rate equations
that describe the transport for each period, and numerically
obtained hnðthÞi. The hnðthÞi can be approximated by a
simple exponential curve hnðthÞi ¼ nmaxe

�Dth . The nmax and
D are plotted in Figs. 4(b) and 4(c). Although the signal
amplitude nmax is different for different bias polarities, the
decay rate D is the same for both polarities. As clearly seen
in Fig. 4(c), D directly gives the relaxation rate W for a wide
condition W � �L.

3. Transient Current Measurement in a Quantum Dot

The two electrical pump and probe techniques were used
to measure the relaxation time in QDs (artificial atoms). The
QD we studied is located in a circular pillar (diameter of
0.5 mm) fabricated from an AlGaAs/InGaAs heterostruc-
ture.10,11) Electrons are confined in an In0:05Ga0:95As
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quantum well, and by approximately two-dimensional
harmonic potentials in the lateral direction. A high-speed
rectangular voltage-pulse (or double-step pulse) is intro-
duced to a gate electrode through a low-loss coaxial cable.
Due to a parasitic capacitance of the electrode (bonding pad)
of the sample, the rise time of the pulse at the sample was
�rise ¼ 0:7{2 ns, which was monitored by the reflected
signal. The rectangular waveform contains a small ringing
structure and fluctuations (less than 10% of the pulse height
in the experiments), which slightly broaden the current peak
and make energy selectivity worse.

Since a very small value of hni, which can be much
smaller than one, is expected, we repeatedly apply pulses
and measure the time-integrated current. The repetition
frequency is typically 1–100MHz for a single-step pulse,
and 5 kHz–1MHz for a double-step pulse. Practically, we
always sweep the dc gate voltage Vh, (Vm) and Vl

simultaneously by keeping the pulse height constant. A
current peak appears when an ES is located in the transport
window during the low-voltage interval of the pulse [see the
corresponding energy diagrams in Figs. 1(d) and 3(d)]. The
average number of tunneling electrons, hni, is obtained from
the peak current divided by the repetition frequency and the
elementary charge. When hni is very small or when the
repetition frequency is very low for the relaxation time
measurement, many measurements of identical sweeps are
averaged and smoothed to obtain a reliable peak current. For
instance, the repetition frequency of 5 kHz and hni � 0:5
gives a current amplitude of only 0.4 fA. We need about one
hour to average out the noise of our current meter

(�20 fA/
ffiffiffiffiffiffi
Hz

p
). We clearly obtain transient current peaks

for forward and reverse conditions under the application of
single- and double-step pulses.

First, we applied single-step pulses to investigate the
relaxation in the N ¼ 1 QD system, which is the simplest
case to study. The relaxation from the first ES to GS does not
involve a spin-flip, and is accompanied by an acoustic
phonon emission.3) Figure 5(a) shows the decay time (the
inverse of the decay rate, �for ¼ D�1) of hnðthÞi for forward
bias (solid circles) and reverse bias (open circles) in the
single-step pulse measurement. The magnetic field, B, was
applied parallel to the current. Unfortunately, nmax, which
varies from 5� 10�3 to 5� 10�2 and is always much
smaller than 1, does not always change systematically,
probably because the rise time of the pulse is comparable to
��1
L , which fluctuates with B and the gate voltage in this

sample. However, the decay time changes systematically
with B as shown in Fig. 5(a), although it scatters by a factor
of 2–3. As explained in the previous section, the decay rate
for reverse bias gives the total tunneling rate. We see that
�rev � ��1

tot slightly increases with B. This dependence is
qualitatively consistent with the B dependence of the
conventional dc tunneling current given by eq. (9).

In contrast, the decay time for forward bias, �for, decreases
with increasing B. We can roughly estimate ��1

R � 200 ns
from the conventional transport measurement, and �for is
always much shorter than ��1

R . For B < 4T, where
�for > �rev � ��1

tot , we believe that the condition of eq. (7)
is satisfied and �for approximately gives the relaxation time
in this system. The observed dependence of �for almost
follows the expected electron-phonon scattering time (solid
line) in this QD,3,12) indicating the validity of the relaxation
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time experiment.
Next, we applied the double-step pulse measurement to

investigate spin-flip energy relaxation in an N ¼ 2 QD. In a
low magnetic field B < 2:5T, the N ¼ 2 GS is a spin-singlet
with two antiparallel-spin electrons occupying the 1s orbital,
while the first ES is a spin-triplet with two parallel-spin
electrons occupying the 1s and 2p orbitals. The relaxation
from the triplet state to the singlet state requires a spin-flip.
Figure 5(b) shows the decay time of hnðthÞi measured with
the double-step scheme, and gives the relaxation time in this
QD. Although the error bar is quite large due to the current
noise in our equipment, the spin-flip relaxation time is
extremely long, �200 ms, compared to the momentum
relaxation time in N ¼ 1 QD.

4. Conclusion

We described two electrical pump and probe techniques to
investigate the relaxation time and tunneling rates separate-
ly. The measurable range in our setup is more than five
orders of magnitude, and can be extended further by using
tunable tunneling barriers and a low-noise current amplifier.
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