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The strength of radiative transitions in atoms is governed by
selection rules that depend on the occupation of atomic orbitals
with electrons1. Experiments have shown2–5 similar electron
occupation of the quantized energy levels in semiconductor
quantum dots—often described as artificial atoms. But unlike
real atoms, the confinement potential of quantum dots is aniso-
tropic, and the electrons can easily couple with phonons of the
material6. Here we report electrical pump-and-probe experi-
ments that probe the allowed and ‘forbidden’ transitions between
energy levels under phonon emission in quantum dots with one
or two electrons (artificial hydrogen and helium atoms). The
forbidden transitions are in fact allowed by higher-order pro-
cesses where electrons flip their spin. We find that the relaxation
time is about 200 ms for forbidden transitions, 4 to 5 orders of
magnitude longer than for allowed transitions. This indicates
that the spin degree of freedom is well separated from the orbital
degree of freedom, and that the total spin in the quantum dots is
an excellent quantum number. This is an encouraging result
for potential applications of quantum dots as basic entities for
spin-based quantum information storage.

The quantum dot (QD) that we study is located in a circular pillar
(diameter 0.5 mm) fabricated from an AlGaAs/InGaAs heterostruc-
ture (Fig. 1a, b and ref. 4). Electrons are confined in an In0.05Ga0.95-

As quantum well (thickness a ¼ 12 nm) in the vertical (z) direction,
and approximately by two orthogonal two-dimensional harmonic
potentials in the lateral (x and y) direction (corresponding con-
finement energies, �hqx < 2:5 meV and �hqy < 5:5 meV; where �h is
Planck’s constant divided by 2p)7,8. As our QD does not have
circular symmetry, orbital degeneracy is lifted even at zero magnetic
field, and only a twofold spin degeneracy is expected. This non-
circularity does not much affect our discussion, and we still use 1s
and 2p to label the orbitals for convenience (Fig. 1c).

First we investigate the N ¼ 1 QD (artificial hydrogen), in which
a single electron occupies the 1s orbital (the ground state) or the 2p
orbital (the first excited state). The energy spectrum of these states
can be obtained by tunnelling spectroscopy, in which a peak in the
derivative of the (source–drain) current with respect to the gate
voltage, dIsd/dVg, appears each time an empty dot state enters the
transport window5. A colour plot of dIsd/dVg versus Vg traces taken
as a function of magnetic field (B) applied in the z direction is shown
in Fig. 1c. The peak spacing within a stripe can be related to the
energy spacings between corresponding states. The energy spacing
between the 1s and 2p states, 11s–2p, of the N ¼ 1 QD deduced from
the first current stripe is plotted in Fig. 2e.

We now focus on the energy relaxation from the 2p state to the 1s
state in the N ¼ 1 QD, which changes the electron’s orbital
momentum but preserves the spin. Electrical pump-and-probe
experiments are performed by applying a time-dependent
gate voltage, Vg(t), which switches between Vl and Vh (Fig. 2a).

Experimental details are given in refs 9 and 10. First, the N ¼ 0 QD
is prepared during the low-phase of the pulse (Vg ¼ Vl ; Fig. 2b).
The period t l ¼ 100–200 ns, is made long enough to ensure that
both the 1s and 2p states are empty. When the pulse is switched on
(Vg ¼ Vh; Fig. 2c), such that only the 2p state is located in the
transport window, an electron can be injected into that state from
the source (pump) with a time constant G21

s < 3 ns: The electron
can only escape to the drain (probe) more slowly, with a time
constant G21

d < 100 ns: However, this escape process can be inter-
rupted by the relaxation into the 1s ground state. Thus, the current
contains information about the relaxation lifetime, t1s–2p. We
measure the averaged direct current, I p, under the application of
the pulse train. Figure 2d shows how this current changes with the
pulse length, th. I p is then converted into an average number of
tunnelling electrons per pulse, kntl¼ Ipðthþ t lÞ=e (e is the elemen-
tary charge). From a detailed analysis of the rate equations including
all possible tunnelling processes, we find kntl < Gdt1s–2p½1 2

expð2th=t1s–2pÞ� under the condition G21
s & t1s–2p , G21

d ; required
for the relaxation time measurement9. We made sure that this
condition was satisfied in all measurements for the N ¼ 1 QD.
The relaxation time thus estimated from the rise time of kn tl is
t1s–2p < 10 ns for the case in Fig. 2d. The small saturation value of
kn tl(,0.02) indicates very efficient relaxation.

Our observations for the N ¼ 1 QD are consistent with momen-
tum relaxation dominated by spontaneous emission of acoustic
phonons at low temperature6. Because of the discrete energy of the
states, relaxation involves emission of a phonon of energy 11s–2p

(with corresponding wavelength l ls–2p). In our experiment, 11s–2p,
and hence l1s–2p, vary with B (Fig. 2e, f). Note also that the
characteristic sizes l x and l y for the lateral dimensions of the QD
decrease with increasing B. The strength of the electron–phonon
interaction is expected to be suppressed for values of l1s–2p that are

Figure 1 Artificial hydrogen and helium atoms. a, Schematic set-up for pulse

measurements on the vertical quantum dot (QD). The In0.05Ga0.95As QD is connected to

source (s) and drain (d) electrodes made of Si-doped GaAs by asymmetric Al0.22Ga0.78As

tunnelling barriers (lower barrier, 7 nm thick; upper barrier, 8.5 nm thick). The tunnelling

rates through the barriers, Gs < (3 ns)21 and Gd < (100 ns)21, are obtained by

separate measurements. The surrounding gate electrode (g) is connected to a pulse

generator, which produces a gate voltage, Vg(t), of rectangular or double-step shape. The

measurements are performed in a dilution refrigerator at a temperature, T, of ,100 mK,

unless otherwise stated, in a magnetic field B ¼ 0–5 T applied parallel to the z direction.

b, Scanning electron micrograph of a control device. c, dI sd/dVg for the N ¼ 1 and 2 QD

taken with a large source–drain voltage (Vsd ¼ 2.8 mV). The first (second) stripe gives

information about the N ¼ 1 (2) QD. The peaks indicated by the arrows show the B-field

evolution of the ground state (lowest edge of each stripe) and the first excited state. The

relevant 1- and 2- electron configurations are also shown, in which the lower (upper)

horizontal line represents the 1s (2p) orbital.
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smaller than the characteristic size of the QD (phonon bottleneck
effect11). Therefore, the B dependence of t1s–2p in Fig. 2g is because
the phonon emission is suppressed (that is, t1s–2p increases) with
decreasing B when l1s–2p becomes shorter than a, lx and ly.

In order to be quantitative, we calculate the phonon emission rate
from Fermi’s golden rule including both deformation and piezo-
electric coupling with standard GaAs material parameters12,13. For
simplicity, the calculation is done for a circular dot, whose effective
confinement energy is �hqeff ¼ �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qxqyð1þq2

c=ðqxþqyÞ
2Þ

p
; where

q c is the cyclotron frequency7. As shown by the solid line in Fig. 2g,
we find agreement with the data. The difference (by about a factor of
2 or 3) might come from the assumptions about the confinement
potential and uncertainties in the material parameters. Thus, the
fast energy relaxation in the N ¼ 1 QD can be well understood by
spontaneous emission of a phonon.

In contrast, the relaxation time is very different for the N ¼ 2 QD
(artificial helium). At low magnetic fields (see second stripe in
Fig. 1c for B , 2.5 T), the many-body ground state is a spin singlet
(labelled S) with two antiparallel-spin electrons occupying the 1s

orbital, while the first excited state is a spin triplet (labelled T) with
two parallel-spin electrons, one each occupying the 1s and 2p
orbitals4,5. Because of Coulomb interactions, the energy spacing
between the two states, 1S–T (,0.6 meV at B ¼ 0 T), is smaller
than 11s–2p. Energy relaxation from the first excited state (T) to the
ground state (S) not only involves the same change in orbital
momentum as that in the N ¼ 1 QD, but also requires a spin
flip because of Pauli exclusion. A simple phonon-emission tran-
sition from the triplet to the singlet is forbidden by spin
conservation.

We now investigate to what degree this transition is ‘forbidden’.
The simple rectangular pulse technique used for the N ¼ 1 QD is
not useful for this N ¼ 2 QD transition, because the relaxation
lifetime, tS–T, is always beyond the measurable range
ðtS–T . G21

d < 100 nsÞ9. Instead, we subject the QD to a double-
step voltage pulse, in which Vg is switched between three voltages,
Vl, Vh and Vm (Fig. 3a). First, when Vg ¼ Vl (Fig. 3b), the N ¼ 1 QD
is prepared during a sufficiently long period, t l ¼ 100 ns. When Vg

is suddenly increased to Vh (Fig. 3c), an electron can enter to create
the N ¼ 2 triplet state within the interval , G21

s ¼ 3–7 ns: Vg ¼ Vh

for the duration th ¼ 100 ns–100ms; which is much longer than
G21

s : The triplet may experience a relaxation process during this
time. When Vg is changed to Vm (Fig. 3d), an electron in the triplet
state can tunnel out to the drain, if the triplet state has not yet

Figure 2 Relaxation time of a one-electron QD (artificial hydrogen atom). a, Pulse

waveform used for the electrical pump-and-probe experiment (l, low; h, high). b and c,

Schematic energy diagrams along the z direction showing low and high pulse situations.

The thick and thin vertical lines denote the asymmetric tunnelling barriers. States in the

electrodes are filled up to the Fermi energies, ms for the source and md for the drain. The

source–drain voltage, Vsd, opens a small transport window eVsd ¼ m s–m d < 0.1 meV.

Solid and dashed horizontal lines denote filled and empty single-particle states,

respectively. When Vg ¼ Vl (b), the 1s and 2p states are located above ms and md. When

Vg ¼ Vh (c), only the 2p state is located in the transport window. The 2p state is pumped

from the source at a tunnelling rate, Gs < (3 ns)21, and probed at a slower rate,

Gd < (100 ns)21. The current measures the momentum relaxation time of the 2p state,

t1s–2p. d, The average number of tunnelling electrons per pulse, kn tl, measured at 1 T.

The relaxation time, t1s–2p ¼ 10 ns, is obtained from the exponential curve (solid line)

fitted to the data. The inset shows the electron configuration before and after relaxation.

e–g, Magnetic field (B) dependence of e, the energy spacing between the 2p excited state

and the 1s ground state, 11s–2p, f, the longitudinal acoustic photon wavelength, l1s–2p,

and characteristic sizes of the QD (a, lx and ly ), and g, the energy relaxation time, t1s–2p.

The solid line in e is a fitted curve with elliptic confinement energies, �hqx < 2:5 meV and

�hqy < 5:5 meV: In f, l1s–2p is calculated for the phonon at energy 11s–2p using a GaAs

sound velocity of 5,100 m s21. The characteristic lateral size in the x/y direction is given

by l x=y ¼

ffiffiffiffiffiffiffiffiffiffiffi
�h=m*

q
ðq2

x=y þq2
c=4Þ21=4, where m* is the effective mass. The solid line in

g is calculated for spontaneous emission of an acoustic phonon.

Figure 3 Relaxation time of a two-electron QD (artificial helium atom). a, Double-step

pulse waveform to measure extremely long relaxation times. b–d, Schematic energy

diagrams showing low, high and intermediate pulse situations. Solid and dashed

horizontal lines denote filled and empty many-body states, respectively. ms 2 md <
0:1 meV: When Vg ¼ Vl (b), the spin-singlet ground state S and the spin-triplet first

excited state T are located above ms and md. The system will always become the N ¼ 1

QD after a sufficiently long period, t l ¼ 100 ns. When Vg ¼ Vh (c), the QD can be excited

to the triplet state within G21
s < 7 ns. The triplet state can then relax to the singlet state

during the period, t h ¼ 0:1–100ms: When Vg ¼ Vm (d), the triplet state is probed by

allowing an electron to tunnel into the drain. This period is fixed at tm ¼ 300 ns. e,

Average number of tunnelling electrons per pulse, kn t l at 0 T. The relaxation time, tS–T ¼

200ms; is obtained from the exponential decay (solid line). Inset, electron configuration

before and after relaxation. f, Temperature (T) dependence of the relaxation time tS–T at

0 T. g, The gate voltage (Vh) dependence of tS–T. Vh is also converted into D1 and D3

energy scales. D1 and D3 are indicated in c. The solid line is calculated for cotunnelling

processes. Inset, diagram of these inelastic cotunnelling processes.
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relaxed to the singlet state. We set the period, tm ¼ 300 ns, to be
longer than G21

d so we can read out the signal. We repeatedly apply
the double-step pulse (effectively ,107 times) to obtain a reliable
current Ip, and evaluate the average number of tunnelling electrons
kntl¼ Ipðt lþ thþ tmÞ=e: As the current measures the unrelaxed
electron number, kntl¼ A expð2th=tS–TÞ for the condition G21

s &
tS–T (no upper limit in principle), where A < 1 is approximately the
ratio of G21

s for the triplet to that for the singlet. Figure 3e shows a
typical measurement of kn tl at 0 T, indicating a relaxation time of
tS–T < 200ms: This relaxation time is 4 to 5 orders of magnitude
longer than that observed in the N ¼ 1 QD.

Looking at the properties of tS–T, we find no clear B dependence
(always longer than 100 ms), at least for 1S–T between 0.6 meV at
B ¼ 0 T and 0.24 meV at B ¼ 2 T (not shown). We also investigate
the temperature dependence (Fig. 3f), but not clear change is
observed up to 0.5 K. tS–T decreases above 0.5 K, where thermal
excitation from the QD to the electrodes becomes important. On
the other hand, we do find that tS–T strongly depends on the high
gate-pulse voltage Vh, during which relaxation takes place (Fig. 3g).
Although Vh is deep in the N ¼ 2 Coulomb blockade region
ð21:27 V , Vh , 21:16 VÞ; tS–T decreases rapidly at Vh <
21:18 V : This Vh dependence implies a strong influence of the
electrodes. Even though the Coulomb blockade is robust in the
suppression of transport, higher-order tunnelling processes can
contribute to the relaxation. An electron in the dot can be replaced
with an electron of opposite spin from the electrodes (see Fig. 3g
inset). This results in energy relaxation in the QD, and the electrode
gains the same energy. This inelastic cotunnelling rate, t21

co ; is
estimated by considering second-order tunnelling processes14–16.
For the relaxation mechanisms considered here, the N ¼ 2 QD can
relax virtually through N ¼ 1 or N ¼ 3 intermediate states. Note
that this process does not cause a net current, even at a finite voltage
of ejVsdj , 1S–T (ref. 17). Assuming Vsd ¼ 0 Vand zero temperature
for simplicity, we obtain t21

co ¼ 1S–Tð�hGsþ �hGdÞ
2ðD21

1 þD21
3 Þ

2=h:
Here, D1 and D3 are respectively the energies required to excite the
initial N ¼ 2 triplet state to the N ¼ 1 and 3 intermediate states
(Fig. 3c). We can extract D1 and D3 from Vh, and the values are
shown in Fig. 3g. The solid line shows tco, the relaxation time due to
cotunnelling, calculated with experimentally deduced parameters
(1S–T ¼ 0:6 meV; and ðGsþGdÞ

21 ¼ 7 nsÞ: The observed relaxation
time can be well understood by inelastic cotunnelling.

Our observations for N ¼ 1 and 2 QDs can be compared with real
atoms1. The transition from the 2p state to the 1s state in atomic
hydrogen is allowed by photon emission, whereas that in artificial
hydrogen is allowed by phonon emission. The transition from the
spin-triplet state to the spin-singlet state is forbidden by conserva-
tion of the total spin for both atomic helium and artificial helium.
The difference between the allowed and forbidden transitions leads
to more than 11 orders of magnitude difference in the relaxation
times for real hydrogen and helium atoms. Our observation of 4 to 5
orders of magnitude difference in artificial atoms is not as high, but
is still surprisingly large. (Note that this difference would become
larger if the cotunnelling could be suppressed by using thicker
tunnelling barriers.) Very importantly, the large difference between
t1s–2p and tS–T originates from the fact that other effects, such as
spin-orbit and hyperfine interactions18,19, must have only a weak
effect on the breaking of the ‘forbidden’ symmetries. We now discuss
how small these hidden contributions are by focusing on spin–orbit
interactions.

Spin–orbit interactions are predicted to give the dominant
contribution to spin relaxation in GaAs QD systems19, although
this is still an extremely small effect. For simplicity, we consider the
spin–orbit interaction energy, D so, only for coupling between the 1s
and 2p orbitals, but include all effects that mix spin and orbital
degrees of freedom. Simple perturbation theory20 predicts that the
relaxation time from the triplet to the singlet is given by tS–T;so <
ð1S–T=DsoÞ

2tphononð1S–TÞ: Here, t21
phononð1S–TÞ is the phonon emis-

sion rate at the phonon energy, 1S–T, and we know that tphonon is
well accounted for by the electron–phonon interaction. Therefore,
we can deduce an upper bound of D so , 4 meV from our obser-
vations ðtS–T . 200msÞ: This value is close to the spin splitting
energy (,2.5 meV) observed in a GaAs two-dimensional electron
gas system21.

Our experiments indicate that the spin degree of freedom in QDs
is well separated from the orbital degree of freedom. This is
particularly attractive for applications to spin memories and spin
quantum bits (qubits)22–24. For a simple scheme involving just a
single-electron spin in a magnetic field, the spin–orbit interactions
can affect the energy relaxation time (T1) of a spin qubit. We
estimate the dominant contribution, T1,so, using a perturbative
approach: T1,so < (11s–2p/D so)2tphonon(1Z). As Dso , 4meV ; this
yields T1,so . 1 ms for a Zeeman splitting (unresolved in our
measurement) 1Z < 0.1 meV and 11s–2p < 1:2 meV at B < 5 T
(T1,so . 100 ms at B < 9 T). This T1,so is thus comparable to that
obtained by electron spin resonance for donor states in GaAs (ref.
25), and is much longer than the time required for typical one- and
two-qubit operations26. Note that small spin–orbit interactions are
also desirable with respect to the dephasing time (T2) of a spin
qubit27. Our results therefore encourage further research on the use
of the spin degree of freedom in QDs. A
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Quantum dynamical processes near the energy barrier that
separates reactants from products influence the detailed mecha-
nism by which elementary chemical reactions occur. In fact, these
processes can change the product scattering behaviour from that
expected from simple collision considerations, as seen in the two
classical reactions F 1 H2 ! HF 1 H and H 1 H2 ! H2 1 H
and their isotopic variants. In the case of the F 1 HD reaction,
the role of a quantized trapped Feshbach resonance state had
been directly determined1, confirming previous conclusions2 that
Feshbach resonances cause state-specific forward scattering of
product molecules. Forward scattering has also been observed in
the H 1 D2 ! HD 1 D reaction3,4 and attributed to a time-
delayed mechanism3,5–7. But despite extensive experimental8–12

and theoretical13–18 investigations, the details of the mechanism
remain unclear. Here we present crossed-beam scattering experi-
ments and quantum calculations on the H 1 HD ! H2 1 D
reaction. We find that the motion of the system along the reaction
coordinate slows down as it approaches the top of the reaction
barrier, thereby allowing vibrations perpendicular to the reac-
tion coordinate and forward scattering. The reaction thus pro-
ceeds, as previously suggested7, through a well-defined
‘quantized bottleneck state’ different from the trapped Feshbach
resonance states observed before.

In this work, we studied the HþHD ! H2þD reaction experi-
mentally using the H(D)-atom Rydberg time-of-flight (HRTOF)
technique, developed in refs 12 and 19. We measured time-of-flight
(TOF) spectra of the D-atom products at different laboratory
scattering angles at the collisional energy of 1.200 eV. The TOF
spectra measured are then converted to the centre-of-mass product
translational energy distributions. Different H2-product rovibra-
tional states can be resolved clearly in this experiment. From these
distributions, relative quantum state-specific differential cross-
sections (DCS) are obtained. On the basis of this measured data,
a full three-dimensional (3D) product contour plot is constructed
and shown in Fig. 1. One of the most interesting observations is the
forward scattering peak seen in Fig. 1, similar to the forward

scattering observed in the H þ D2 reaction3–5 at higher collisional
energies. The characteristics of the forward scattering H2 products
are unique. First, it is clear that the forward scattering H2-products
are significantly colder rotationally, with mainly H2( j

0
¼ 1) popu-

lated, than the backwards and sideways scattering products. Second,
the angle range of the observed forward scattering peak is extremely
narrow. Experimental characteristics of the forward scattering peak
including the rotational distribution and the angular width can be
readily reproduced by the quantum calculations. However, to assign
the forward peak to specific dynamical behaviour requires further
theoretical analysis.

Figure 1 Three-dimensional product contour plots as a function of product velocity.

Shown are product contour plots versus product velocity in the centre-of-mass frame

obtained experimentally (a) and theoretically (b). Experimentally, time-of-flight spectra of

the D-atom product were measured at every 5 degrees and then converted into the

translational energy distribution in the centre-of-mass frame. From these translational

energy distributions, the angular distributions of all H2-product quantum states can be

determined. The experimental 3D product contour plot (a) is obtained from fitting

smoothly the experimental angular distributions of all product (H2) quantum states using a

multi-order polynomial function. Theoretically, the S-matrix for H þ HD was calculated

using quantum-reactive scattering methods described previously17,18, on the BKMP2

PES20. Differential cross-sections (DCS) at different centre-of-mass angles were

computed from the S-matrix. The theoretical 3D product contour plot is constructed from

these calculated DCS. The forward-scattering direction (v ¼ 08) is denoted F and the

backward-scattering direction is denoted B. The height of the peaks represents the

magnitude of DCS, while the radius from the centre represents the product translational

energy, E T.
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